UNIVERSITY OF LONDON

GENERAL CERTIFICATE OF EDUCATION EXAMINATION

Advanced Level

Summer, 1951

PURE MATHEMATICS.—II

Examiners:

Professor R. L. Goodstein, M.Sc., Ph.D., D.Lit.

E. E. Ironmonger, Esq., B.Sc.

E. S. Martin, Esq., Ph.D.

H. E. PARR, Esq., M.A.

FRIDAY, June 15.—Morning, 9.30 to 12.30

[Not more than eight questions are to be attempted.]

1. (i) By considering the roots of the equation

$$\sin 2\theta = \cos 3\theta$$
,

prove that $\sin 18^{\circ} = (\sqrt{5}-1)/4$, and deduce the value of $\cos 36^{\circ}$.

(ii) Prove that

$$\cos^2\left(\frac{\pi}{8}-\alpha\right)-\cos^2\left(\frac{\pi}{8}+\alpha\right)=\frac{1}{\sqrt{2}}\sin\,2\alpha.$$

- 2. The altitudes from the vertices A, B, C of a triangle are of lengths h_1 , h_2 , h_3 , and the radius of the circumcircle is R. Prove that
 - (i) $h_1 \sin A = h_2 \sin B = h_3 \sin C$;
 - (ii) $h_1 \cos A + h_2 \cos B + h_3 \cos C = (a^2 + b^2 + c^2)/4R$.
 - T. & F.—50/1400 7/2/2/4200

3. A triangle ABC is drawn on a plane which makes an angle θ with the horizontal; A and B are on the same level, and C is below them; CA, CB make angles α , β with the horizontal plane. Prove that $\sin \theta = c \sin \beta/b \sin C$, and deduce that

$$\sin^2 \theta \sin^2 C = \sin^2 \alpha + \sin^2 \beta - 2 \sin \alpha \sin \beta \cos C$$
.

4. Draw the graph of $y=\sin x^{\circ}$ for values of x from 0 to 180.

P is a point on a semicircle of which AB is the diameter. If the length of the arc AP is twice the distance of P from AB, find, from the graph or otherwise, the angle which AP subtends at the centre of the circle.

- 5. A square ABCD has its opposite vertices A and C at (2, -5) and (-4, 3). Find the co-ordinates of B and D, and the equations of the lines which contain the sides of the square.
- 6. Show that the co-ordinates of any point lying on the straight line which passes through the point (a, b) and makes an angle α with the x-axis can be written in the form

$$x=a+r\cos\alpha$$
, $y=b+r\sin\alpha$.

A line which makes an acute angle θ with the positive x-axis is drawn through the point P, whose co-ordinates are (3,4), to cut the curve $y^2=4x$ at Q and R. Show that the lengths of the segments PQ and PR are the numerical values of the roots of the equation

$$r^2 \sin^2 \theta + 4r(2 \sin \theta - \cos \theta) + 4 = 0.$$

Hence find the gradients of the tangents from P to the curve.

7. P is any point on the curve $y^2=4ax$, and O is the origin; Q is the foot of the perpendicular from P to the y-axis, R is the foot of the perpendicular from Q to OP, and QR produced meets the x-axis at K. Prove that K is a fixed point, and find its co-ordinates.

Prove also that the locus of R is a circle.

8. (i) If
$$y = \left(\frac{x^2 - 2}{x^2 + 1}\right)^n$$
, prove that
$$\frac{dy}{dx} = \frac{6nxy}{(x^2 - 2)(x^2 + 1)}.$$

(ii) Explain, with reference to a diagram, the meaning of the statement " δy is approximately equal to $\frac{dy}{dx} \delta x$," where y is a function of x, and δx , δy are corresponding small increments in x, y.

Use this result to estimate the error made in calculating the area of a triangle ABC in which the sides a and b are measured accurately as 16 in. and 25 in., while the angle C is measured as 60° but is $\frac{1}{2}^{\circ}$ in error. (Give the answer in terms of π .)

9. Find (i)
$$\int \left(x + \frac{1}{x}\right)^2 dx$$
;
(ii) $\int_{\pi/6}^{\pi/2} \sin x \sin 2x \, dx$;
(iii) $\int_{0}^{\pi/2} \cos^3 x \, dx$.

- 10. (i) If $\frac{dy}{dx} = 6x + 2$, and y=5 when x=0, find y in terms of x.
- (ii) Sketch the graph of $y^2=x(x-3)^2$, and find the area of the loop.