UNIVERSITY OF LONDON

B.Sc. (ENGINEERING) EXAMINATION 1962

PART I

for Internal and External Students

(1) MATHEMATICS I

Tuesday, 19 June: 10 to 1

Full marks may be obtained for correct answers to about SEVEN questions.

1. (a) If

神事 なるまけいのまかけ

$$y=\frac{\sin^{-1}x}{\sqrt{(1-x^2)}},$$

prove that

$$(1-x^2)\frac{dy}{dx} = xy + 1.$$

(b) Find dy/dx in its simplest form if

$$y = \frac{(2x-1)(3-x)^3}{(2-x)^2}.$$

(c) If $x = \log \tan \frac{1}{2}\theta$, $y = \tan \theta - \theta$, prove that

$$\frac{d^2y}{dx^2} = \tan^2\theta \sin\theta(\cos\theta + 2\sec\theta).$$

42. (a) Expand

$$\sqrt{(1+ax+bx^2+cx^3)} - \sqrt{(1+ax+bx^2)}$$

in ascending powers of x as far as the term in x^5 .

(b) Write down the expansion in ascending powers of x of e^x and $\log(1 + x)$ and state the range of values of x for which each expansion is valid. Find the limiting value, as x tends to zero, of

$$\frac{\log\{\frac{1}{2}(e^x+e^{-x})\}-\frac{1}{2}x^2}{x^4}.$$

3. Obtain the equation of the normal at the point $P(a\cos\theta, b\sin\theta)$ to the ellipse $x^2/a^2 + y^2/b^2 = 1$ and prove that the length of the perpendicular p from the origin to this normal is

$$\frac{a^2 - b^2}{\sqrt{(a^2 \sec^2 \theta + b^2 \csc^2 \theta)}}.$$

Show that the greatest value of p is given by $\tan^2 \theta = b/a$.

4. If $f(x) = Ax^2 + Bx + C$, where A, B and C are constants, prove that

$$\int_{a}^{b} f(x) dx = \frac{1}{6} (b - a) \left\{ f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right\}.$$

Deduce Simpson's rule for the approximate evaluation of a definite integral. Apply the rule to obtain an approximate value of

$$\int_{1}^{2} (x-1)^{2} \log_{10} x \, dx,$$

by dividing up the range of integration into 10 equal parts.

5. (a) Find the loci in the Argand diagram corresponding to the equations

(i)
$$\arg \frac{z-1}{z-j} = \frac{\pi}{2}$$
, (ii) $|z-1| = 2|z-j|$.

- (b) If the point z = x + jy describes the circle |z 1| = 1, show that the real part of 1/(z 2) is constant.
- 6. Define $\cosh x$ and $\tanh x$ and show that $\cosh x \ge 1$ and $-1 < \tanh x < 1$. If x and y satisfy the equations

$$\cosh x \cosh y = 2, \qquad \sinh x \sinh y = -1,$$

show by direct solution that $x = -y = \pm \log(1 + \sqrt{2})$.

- **1.** Show that the coordinates of the centre of curvature at the point $(at^2, 2at)$ on the parabola $y^2 = 4ax$ are $\{a(2 + 3t^2), -2at^3\}$. Find the coordinates of the points where the locus of the centres of curvature meets the parabola.
- 8. (a) Solve the differential equation

$$x\frac{dy}{dx} = y \log x.$$

(b) Solve the differential equation

$$\frac{dy}{dx} + \frac{y^2 + y + 1}{(x+1)^2} = 0$$

and find the equation of the family of curves any one of which is orthogonal to a solution of this differential equation.

A train of mass m lb moves on straight horizontal rails against a resistance kv lb wt where v ft/sec is the velocity and k is a constant. The engine works at a constant rate of 400k ft lb/sec. Show that the time taken to increase the speed of the train from 4 ft/sec to 10 ft/sec is $(m/2kg) \log \frac{32}{25}$ sec and find the distance covered in this time interval.

B. A. EDWARDS D. E. R. GODFREY

> 2-1 = 1; >1+19-1 = 1; >1+19-1 = 1;