UNIVERSITY OF LONDON

B.Sc. (ENGINEERING) EXAMINATION 1962

PART I

for Internal and External Students

(1) MATHEMATICS II

Tuesday, 19 June: 2.30 to 5.30

Full marks may be obtained for correct answers to about SEVEN questions.

1. (a) Show that

$$\int_0^2 \frac{5x \, dx}{(x+1)(x^2+4)} = \frac{\pi}{2} - \frac{1}{2} \log\left(\frac{9}{2}\right).$$

(b) Evaluate

(i)
$$\int_0^1 \sin^{-1} x \, dx$$
, (ii) $\int_{a/2}^a \frac{dx}{x\sqrt{(a^2-x^2)}}$.

2. If $I_n = \int_0^{\pi/2} \cos^n x \, dx$ where n > 1, show that

$$I_n = \frac{n-1}{n} I_{n-2}.$$

Hence, or otherwise, calculate

- (i) the mean value of $(a^2 x^2)^{\frac{1}{2}}$ over the range $0 \le x \le a$,
- (ii) the root mean square of $\cos^3 \theta$ over the range $0 \le \theta \le \pi$.

3. If
$$y = \{x + \sqrt{(1 + x^2)}\}^{3/2}$$
, show that

(i)
$$4(1+x^2)\left(\frac{dy}{dx}\right)^2 = 9y^2$$
,

(ii)
$$4(1+x^2)\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} - 9y = 0.$$

Hence, or otherwise, obtain the power-series expansion of y in ascending powers of x as far as the term in x^3 .

3/ Show that the equation of the tangent at the point P with parameter t on the curve

$$x = 2a \cos^3 t$$
, $y = a \sin^3 t$, $(0 \le t \le \frac{1}{2}\pi)$

is
$$x \sin t + 2y \cos t - 2a \sin t \cos t = 0$$

and obtain the equation of the normal to the curve at P.

If the tangent at P cuts the y-axis at A calculate the area of the triangle POA where O is the origin, and find the greatest value of this area.

5. (a) Find the three complex roots of the equation

$$z^3 = 1 - j$$

giving your answers in the form $r e^{i\theta}$ where r is positive and $-\pi < \theta \le \pi$. Indicate the positions of the roots on an Argand diagram. Express the root lying in the second quadrant of the Argand diagram in the form a + jb, giving a and b correct to two places of decimals.

- Apply De Moivre's theorem to obtain the expansion of $\sin 7\theta$ as a polynominal in $\sin \theta$.
- 6. Sketch the curve $ay^2 = x^2(a-x)$, where a > 0, and show that the tangents at the origin to this curve are perpendicular. Calculate the area A enclosed by the x-axis and that part of the curve which lies in the first quadrant. Calculate also the volume swept out when the area A is rotated through 2π about (i) the x-axis, (ii) the y-axis.

Deduce the coordinates of the centroid of the area A.

7. Sketch the curve $r = a \cos^2 \theta$, and find the area enclosed by that loop of the curve for which $-\pi/2 \le \theta \le \pi/2$.

Show that the length l of this loop is

$$2a\int_0^{\pi/2}\cos\theta\sqrt{(1+3\sin^2\theta)}\,d\theta$$

and by the substitution $\sin \theta = (1/\sqrt{3}) \sinh x$ or otherwise, show that

$$l = \frac{a}{\sqrt{3}} \left\{ 2\sqrt{3} + \log(2 + \sqrt{3}) \right\}.$$

8. (a) If $xy = C_1 \cos 2x + C_2 \sin 2x$, where C_1 and C_2 are arbitrary constants, obtain the second order differential equation satisfied by y in the form

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4xy = 0.$$

Solve the differential equation

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 36x$$

given that y = 0 and dy/dx = -10 when x = 0.

Show that in this case the graph of y against x has an inflexion where $x = -\log \frac{27}{2}$.

9. Prove that the moment of inertia of a uniform solid circular cylinder, of radius a, length 3a and mass M, about a diameter of one end is $13Ma^2/4$.

The cylinder can turn freely about a fixed horizontal axis which coincides with a diameter of one end. The cylinder is released from rest when its axis makes an angle β with the downward vertical. Calculate the angular velocity of the cylinder in the subsequent motion when the axis of the cylinder makes an angle θ with the downward vertical and deduce the period of small oscillations about the position of stable equilibrium.

A. GEARY
C. PLUMPTON

grand Jennie - mignit